yara Documentation
Release 4.4.0

Victor M. Alvarez

Sep 15, 2023

Contents

1 Getting started 3
1.1 Compiling and installing YARA e 3
1.1.1 Installing withvepkg o e 4

1.1.2 Installing on Windows oL e e 4

1.1.3 Installing on Mac OS X with Homebrew 5

1.1.4 Installing yara—-python e e e e e e 5

1.2 Running YARA forthe firsttime e 5
2 Writing YARA rules 7
2.1 COMMENLS . o v v vttt e e e e e e e e e 8
2.2 SHNGS . o e e e e e e e e e e e e e 8
2.2.1 Hexadecimal strings L e e 8

222 TexXUSIINGS v v vt i e e e e e e e e e 10

223 Regular eXpressions L. e e e e e e e e e e e e e 15

224 Private SIINGS . . . v v v vt e 16

2.2.5 Unreferenced Strings v v v v i i e e e e e e e e e e e e e e e 17

2.2.6 String Modifier Summary 17

2.3 ConditionS oL e e e e e e e e e e e e e e e e 18
23.1 Counting StriN@S . . .« o v v vt i e e e e e e e e e e e e e e e e 20

2.3.2 String offsets or virtual addresseso 20

233 Matchlength o . e e e 21

234 Filesize 21

2.3.5 Executableentry pointl 22

2.3.6 Accessingdataata given positiono .ot e e e e e 22

237 Sets Of Strings . . . o v o i e e e e e e e e e e 23

2.3.8 Applying the same condition to many stringso 25

2.3.9 Using anonymous strings with of and for..of 25
2.3.10 Iterating OVer String OCCUITENCES « .« v v v v v e ettt e e e e e e e e e e 26
2301 Terators o i e e e e e e e e e e e e e e e e e e e 26
2.3.12 Referencing otherrules L 27

24 Moreaboutrules e e e e 28
24.1 Globalrules 28

242 Privaterules e e e e 29

243 Ruletags e e 29

244 Metadata L e e e e e e e e e e e 29

2.5 Usingmodules e e e 30

2.6 Undefined values e
2.7 External variables e e
2.8 Including files L e e e e e e
Modules
3.1 PEmodule e e
3.1.1 Reference e e e e e e e e e e e
32 ELFmodule e e e
3.2.1 Reference e e
33 Cuckoomodule e
3.3.1 Reference e e e e e
34 Magicmoduleo e e e e e e
3.5 Hashmodule e e e e e
3.6 Mathmodule e e e e e
3.7 dotnetmodule e
3.7.1 Reference e e e e e e
3.8 Timemodule e e e e
3.9 Consolemodule e e
3.10 Stringmodule . ..o e e e e e e e
3.11 LNKmodule s
3.11.1 Reference L e e e e e e e e

Writing your own modules

4.1 The "Hello World!" module e
4.1.1 Building our "Hello World!" e
4.2 Thedeclaration SECON v v v vttt e e e e e e e e e e
421 BaSiCLYPES . v v v v o i e e e e e e e e e e e e e e e e
422 SHUCHUIES & .« v v v v v v e
423 AITAYS . o e e e e e e e
424 DICHONAIES . . .« v v v it e e e e e e e e e e e e e e e
425 Functions e e e e
4.3 Initialization and finalization L. oL
4.4 Implementing the module’s logic e
44.1 Accessingthescanneddata
4.4.2 Setting variable’s values e
443 Storing dataforlateruse e e e e e e e e
4.5 Moreabout functions e e e e e
4.5.1 Function arguments e e e e e e e
452 Returnvalues e e e e e e
453 Accessing ODJECES e e e e
454 SCanCoONEEXL. . . v v v v v vt e e e e e e e e e e e e e e e e e
Running YARA from the command-line
Using YARA from Python
6.1 Reference e e e e e
The C API
7.1 Initializing and finalizing libyara L
7.2 Compilingrules e e e e e e e e
7.3 Defining external variables
7.4 Saving and retrieving compiledrules L L L L
7.5 Scanning@data. e e e e e e e e e e e e e e e
7.5.1 USINGasCanner it e e e e e e e e e e e
7.6 APIreference L e e e e e e

35
35
36
56
56
62
63
64
65
66
68
69
72
72
73
74
74

91
91
93
95
95
95
96
97
97
98
99
100
101
103
104
104
105
105
106

107

7.6.1 Data StruCtures o e e e e e e e e e e e e e e 124

T.6.2 FunctionS v i i it e e e e e e e e 126
7.6.3 Errorcodes e e e e e e e e 132
Python Module Index 135
Index 137

yara Documentation, Release 4.4.0

YARA is a tool aimed at (but not limited to) helping malware researchers to identify and classify malware samples.
With YARA you can create descriptions of malware families (or whatever you want to describe) based on textual or
binary patterns. Each description, a.k.a. rule, consists of a set of strings and a boolean expression which determine its

logic. Let’s see an example:

rule silent_banker : banker

{

meta:
description = "This is just an example"
threat_level = 3
in_the _wild = true

strings:

Sa = {6A 40 68 00 30 00 00 6A 14 8D 91}
Sb = {8D 4D BO 2B Cl1 83 CO 27 99 6A 4E 59 F7 F9}
Sc = "UVODFRYSIHLNWPEJXQZAKCBGMT"
condition:
Sa or Sb or S$Sc

The above rule is telling YARA that any file containing one of the three strings must be reported as silent_banker.
This is just a simple example, more complex and powerful rules can be created by using wild-cards, case-insensitive
strings, regular expressions, special operators and many other features that you’ll find explained in this documentation.

Contents:

Contents

yara Documentation, Release 4.4.0

2 Contents

CHAPTER 1

Getting started

YARA is a multi-platform program running on Windows, Linux and Mac OS X. You can find the latest release at
https://github.com/VirusTotal/yara/releases.

1.1 Compiling and installing YARA

Download the source tarball and get prepared for compiling it:

tar -zxf yara-4.4.0.tar.gz
cd yara-4.4.0
./bootstrap.sh

Make sure you have automake, 1ibtool, make and gcc and pkg—config installed in your system. Ubuntu and
Debian users can use:

sudo apt-get install automake libtool make gcc pkg-config

If you plan to modify YARA'’s source code you may also need £1ex and bison for generating lexers and parsers:

sudo apt-get install flex bison

Compile and install YARA in the standard way:

./bootstrap.sh
./configure

make

sudo make install

Run the test cases to make sure that everything is fine:

make check

https://github.com/VirusTotal/yara/releases

yara Documentation, Release 4.4.0

Some of YARA's features depend on the OpenSSL library. Those features are enabled only if you have the OpenSSL
library installed in your system. If not, YARA is going to work fine but you won’t be able to use the disabled features.
The configure script will automatically detect if OpenSSL is installed or not. If you want to enforce the OpenSSL-
dependent features you must pass ——with-crypto to the configure script. Ubuntu and Debian users can use
sudo apt-get install libssl-dev to install the OpenSSL library.

The following modules are not compiled into YARA by default:
* cuckoo
* magic
* dotnet

If you plan to use them you must pass the corresponding ——enable—-<module name> arguments to the
configure script.

For example:

./configure --enable-cuckoo

./configure --enable-magic

./configure --enable-dotnet

./configure --enable-cuckoo —--enable-magic --enable-dotnet

Modules usually depend on external libraries, depending on the modules you choose to install you’ll need the following
libraries:

* cuckoo: Depends on Jansson for parsing JSON. Some Ubuntu and Debian versions already include a package
named libjansson-dev,if sudo apt-get install libjansson-dev doesn’t work for you
then get the source code from its repository.

* magic: Depends on libmagic, a library used by the Unix standard program file. Ubuntu, Debian and CentOS
include a package 1ibmagic—dev. The source code can be found here.

1.1.1 Installing with vcpkg

You can also download and install YARA using the vcpkg dependency manager:

git clone https://github.com/microsoft/vecpkg.git
cd vcpkg

. /bootstrap-vecpkg.sh

./vcpkg integrate install

vcpkg install yara

The YARA port in vepkg is kept up to date by Microsoft team members and community contributors. If the version is
out of date, please create an issue or pull request on the vepkg repository.

1.1.2 Installing on Windows

Compiled binaries for Windows in both 32 and 64 bit flavors can be found in the link below. Just download the version
you want, unzip the archive, and put the yara.exe and yarac.exe binaries anywhere in your disk.

Download Windows binaries

To install YARA using Scoop or Chocolatey, simply type scoop install yara or choco install yara.
The integration with both Scoop and Chocolatey are not maintained their respective teams, not by the YARA authors.

4 Chapter 1. Getting started

http://www.digip.org/jansson/
https://github.com/akheron/jansson
http://en.wikipedia.org/wiki/File_(command)
ftp://ftp.astron.com/pub/file/
https://github.com/Microsoft/vcpkg/
https://github.com/Microsoft/vcpkg/
https://github.com/VirusTotal/yara/releases/latest
https://scoop.sh
https://chocolatey.org

yara Documentation, Release 4.4.0

1.1.3 Installing on Mac OS X with Homebrew

To install YARA using Homebrew, simply type brew install yara.

1.1.4 Installing yara-python

If you plan to use YARA from your Python scripts you need to install the yara-python extension. Please refer to
https://github.com/VirusTotal/yara-python for instructions on how to install it.

1.2 Running YARA for the first time

Now that you have installed YARA you can write a very simple rule and use the command-line tool to scan some file:

echo "rule dummy { condition: true }" > my_first_rule
yvara my_first_rule my_first_rule

Don’t get confused by the repeated my_first_rule in the arguments to yara, I'm just passing the same file as
both the rules and the file to be scanned. You can pass any file you want to be scanned (second argument).

If everything goes fine you should get the following output:

dummy my_first_rule

Which means that the file my_ first_rule is matching the rule named dummy.

If you get an error like this:

yara: error while loading shared libraries: libyara.so.2: cannot open shared
object file: No such file or directory

It means that the loader is not finding the 1ibyara library which is located in /usr/local/lib. In some Linux
flavors the loader doesn’t look for libraries in this path by default, we must instruct it to do so by adding /usr/
local/1lib to the loader configuration file /etc/1d.so.conf:

sudo sh -c¢ 'echo "/usr/local/lib" >> /etc/ld.so.conf'
sudo ldconfig

On newer Ubuntu releases such as 22.04 LTS, the correct loader configuration is installed via dependencies to /et c/
1d.so.conf.d/libc.conf. In this case, the following command alone is sufficient to configure the dynamic
linker run-time bindings.

sudo ldconfig

If you’re using Windows PowerShell as your command shell, yara my_first_rule my_first_rule may
return this error:

my_first_rule(l): error: non-ascii character

You can avoid this by using the Set —-Content cmdlet to specify ascii output when creating your rule file:

Set-Content -path .\my_first_rule -Value "rule dummy { condition: true }" —Encoding,,
—Ascii
\yara my_first_rule my_first_rule

1.2. Running YARA for the first time 5

https://brew.sh
https://github.com/VirusTotal/yara-python

yara Documentation, Release 4.4.0

6 Chapter 1. Getting started

CHAPTER 2

Writing YARA rules

YARA rules are easy to write and understand, and they have a syntax that resembles the C language. Here is the
simplest rule that you can write for YARA, which does absolutely nothing:

rule dummy
{
condition:
false

Each rule in YARA starts with the keyword rule followed by a rule identifier. Identifiers must follow the same
lexical conventions of the C programming language, they can contain any alphanumeric character and the underscore
character, but the first character cannot be a digit. Rule identifiers are case sensitive and cannot exceed 128 characters.
The following keywords are reserved and cannot be used as an identifier:

Table 1: YARA keywords

all and any ascii at base64 base64wide | condition
contains endswith entrypoint | false filesize for fullword global
import icontains iendswith iequals in include intl6 int16be
int32 int32be int8 int8be istartswith | matches meta nocase
none not of or private rule startswith strings
them true uint16 uint16be uint32 uint32be uint8 uint8be
wide Xor defined

Rules are generally composed of two sections: strings definition and condition. The strings definition section can
be omitted if the rule doesn’t rely on any string, but the condition section is always required. The strings definition
section is where the strings that will be part of the rule are defined. Each string has an identifier consisting of a $
character followed by a sequence of alphanumeric characters and underscores, these identifiers can be used in the
condition section to refer to the corresponding string. Strings can be defined in text or hexadecimal form, as shown in
the following example:

yara Documentation, Release 4.4.0

rule ExampleRule
{
strings:
Smy_text_string = "text here"
Smy_hex_string = { E2 34 Al C8 23 FB }

condition:
Smy_text_string or $my_hex_string

Text strings are enclosed in double quotes just like in the C language. Hex strings are enclosed by curly brackets,
and they are composed by a sequence of hexadecimal numbers that can appear contiguously or separated by spaces.
Decimal numbers are not allowed in hex strings.

The condition section is where the logic of the rule resides. This section must contain a boolean expression telling
under which circumstances a file or process satisfies the rule or not. Generally, the condition will refer to previously
defined strings by using their identifiers. In this context the string identifier acts as a boolean variable which evaluate
to true if the string was found in the file or process memory, or false if otherwise.

2.1 Comments

You can add comments to your YARA rules just as if it was a C source file, both single-line and multi-line C-style
comments are supported.

/ *
This is a multi-line comment
*/
rule CommentExample // ... and this is single-line comment

{
condition:
false // just a dummy rule, don't do this

2.2 Strings

There are three types of strings in YARA: hexadecimal strings, text strings and regular expressions. Hexadecimal
strings are used for defining raw sequences of bytes, while text strings and regular expressions are useful for defining
portions of legible text. However text strings and regular expressions can be also used for representing raw bytes by
mean of escape sequences as will be shown below.

2.2.1 Hexadecimal strings

Hexadecimal strings allow four special constructions that make them more flexible: wild-cards, not operators, jumps,
and alternatives. Wild-cards are just placeholders that you can put into the string indicating that some bytes are
unknown and they should match anything. The placeholder character is the question mark (?). Here you have an
example of a hexadecimal string with wild-cards:

rule WildcardExample
{

(continues on next page)

8 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

(continued from previous page)

strings:
Shex_string = { E2 34 ?? C8 A? FB }

condition:
Shex_string

As shown in the example the wild-cards are nibble-wise, which means that you can define just one nibble of the byte
and leave the other unknown.

Starting with version 4.3.0, you may specify that a byte is not a specific value. For that you can use the not operator
with a byte value:

rule NotExample
{
strings:
Shex_string = { F4 23 ~00 62 B4 }
Shex_string2 = { F4 23 ~?0 62 B4 }
condition:
Shex_string and $hex_string2

In the example above we have a byte prefixed with a tilde (~), which is the not operator. This defines that the byte in
that location can take any value except the value specified. In this case the first string will only match if the byte is not
00. The not operator can also be used with nibble-wise wild-cards, so the second string will only match if the second
nibble is not zero.

Wild-cards and not operators are useful when defining strings whose content can vary but you know the length of the
variable chunks, however, this is not always the case. In some circumstances you may need to define strings with
chunks of variable content and length. In those situations you can use jumps instead of wild-cards:

rule JumpExample
{
strings:
Shex_string = { F4 23 [4-6] 62 B4 }

condition:
$hex_string

In the example above we have a pair of numbers enclosed in square brackets and separated by a hyphen, that’s a jump.
This jump is indicating that any arbitrary sequence from 4 to 6 bytes can occupy the position of the jump. Any of the
following strings will match the pattern:

F4 23 01 02 03 04 62 B4
F4 23 00 00 00 00 00 62 B4
F4 23 15 82 A3 04 45 22 62 B4

Any jump [X-Y] must meet the condition 0 <= X <=Y. In previous versions of YARA both X and Y must be lower
than 256, but starting with YARA 2.0 there is no limit for X and Y.

These are valid jumps:

FE 39 45 [0-8] 89 00
FE 39 45 [23-45] 89 00
FE 39 45 [1000-2000] 89 00

2.2, Strings 9

yara Documentation, Release 4.4.0

This is invalid:

’FE 39 45 [10-7] 89 00

If the lower and higher bounds are equal you can write a single number enclosed in brackets, like this:

’FE 39 45 [6] 89 00

The above string is equivalent to both of these:

FE 39 45 [6-6] 89 00
FE 39 45 2?2 2?2 2?2 22 2?2 2?2 89 00

Starting with YARA 2.0 you can also use unbounded jumps:

FE 39 45 [10-] 89 00
FE 39 45 [-] 89 00

The first one means [10—-infinite], the second one means [0—infinite].

There are also situations in which you may want to provide different alternatives for a given fragment of your hex
string. In those situations you can use a syntax which resembles a regular expression:

rule AlternativesExamplel
{
strings:
Shex_string = { F4 23 (62 B4 | 56) 45 }

condition:
Shex_string

This rule will match any file containing F42362B445 or F4235645.

But more than two alternatives can be also expressed. In fact, there are no limits to the amount of alternative sequences
you can provide, and neither to their lengths.

rule AlternativesExample2
{
strings:
Shex_string = { F4 23 (62 B4 | 56 | 45 ?? 67) 45}

condition:
Shex_string

As can be seen also in the above example, strings containing wild-cards are allowed as part of alternative sequences.

2.2.2 Text strings

As shown in previous sections, text strings are generally defined like this:

rule TextExample
{
strings:
Stext_string = "foobar"

(continues on next page)

10 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

(continued from previous page)

condition:
Stext_string

This is the simplest case: an ASCII-encoded, case-sensitive string. However, text strings can be accompanied by some
useful modifiers that alter the way in which the string will be interpreted. Those modifiers are appended at the end of
the string definition separated by spaces, as will be discussed below.

Text strings can also contain the following subset of the escape sequences available in the C language:

\" Double quote

AR Backslash

\r Carriage return

\t Horizontal tab

\n New line

\xdd Any byte in hexadecimal notation

In all versions of YARA before 4.1.0 text strings accepted any kind of unicode characters, regardless of their encoding.
Those characters were interpreted by YARA as raw bytes, and therefore the final string was actually determined by
the encoding format used by your text editor. This never meant to be a feature, the original intention always was
that YARA strings should be ASCII-only and YARA 4.1.0 started to raise warnings about non-ASCII characters in
strings. This limitation does not apply to strings in the metadata section or comments. See more details [here](https:
//github.com/VirusTotal/yara/wiki/Unicode-characters-in- YARA)

Case-insensitive strings

Text strings in YARA are case-sensitive by default, however you can turn your string into case-insensitive mode by
appending the modifier nocase at the end of the string definition, in the same line:

rule CaselInsensitiveTextExample
{
strings:
Stext_string = "foobar" nocase

condition:
Stext_string

With the nocase modifier the string foobar will match Foobar, FOOBAR, and fOoBaR. This modifier can be used in
conjunction with any modifier, except base64, base64wide and xor.

Wide-character strings
The wide modifier can be used to search for strings encoded with two bytes per character, something typical in many
executable binaries.

For example, if the string "Borland" appears encoded as two bytes per character (i.e.
B\x000\x00r\x001\x00a\x00n\x00d\x00), then the following rule will match:

rule WideCharTextExamplel
{

strings:

(continues on next page)

2.2. Strings "

https://github.com/VirusTotal/yara/wiki/Unicode-characters-in-YARA
https://github.com/VirusTotal/yara/wiki/Unicode-characters-in-YARA

yara Documentation, Release 4.4.0

(continued from previous page)

Swide_string = "Borland" wide

condition:
$wide_string

However, keep in mind that this modifier just interleaves the ASCII codes of the characters in the string with zeroes,
it does not support truly UTF-16 strings containing non-English characters. If you want to search for strings in both
ASCII and wide form, you can use the ascii modifier in conjunction with wide , no matter the order in which they
appear.

rule WideCharTextExample?2
{
strings:
Swide_and_ascii_string = "Borland" wide ascii

condition:
Swide_and_ascii_string

The ascii modifier can appear alone, without an accompanying wide modifier, but it’s not necessary to write it
because in absence of wide the string is assumed to be ASCII by default.

XOR strings

The xor modifier can be used to search for strings with a single byte XOR applied to them.

The following rule will search for every single byte XOR applied to the string "This program cannot" (including the
plaintext string):

rule XorExamplel
{
strings:
$xor_string = "This program cannot" =xor

condition:
$xor_string

The above rule is logically equivalent to:

rule XorExample2

{

strings:
Sxor_string_00 = "This program cannot"
S$xor_string_01 = "Uihr!gsnfs 1!b oonu"
$xor_string_02 = "Vijkg\"rpmepco\"acllmv"
// Repeat for every single byte XOR

condition:
any of them

You can also combine the xor modifier with wide and ascii modifiers. For example, to search for the wide and
ascii versions of a string after every single byte XOR has been applied you would use:

12 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

rule XorExample3
{
strings:
$xor_string = "This program cannot" xor wide ascii
condition:
Sxor_string

The xor modifier is applied after every other modifier. This means that using the xor and wide together results in
the XOR applying to the interleaved zero bytes. For example, the following two rules are logically equivalent:

rule XorExampled
{
strings:
Sxor_string = "This program cannot" xor wide
condition:
S$xor_string

rule XorExample4
{
strings:
Sxor_string_00 = "T\x00h\x00i\x00s\x00_,
—\x00p\x00r\x000\x00g\x00r\x00a\x00m\x00 \x00c\x00a\x00n\x00n\x000\x00t\x00"
S$xor_string_01 = "U\x01i\x01h\x01lr\x01!
—\x01g\x01s\x01n\x01f\x01s\x01 " \x011\x01!'\x01b\x01 \x010\x010\x01n\x01u\x01"
Sxor_string_02 = "V\x02j\x02k\x02g\x02\
—"\x02r\x02p\x02m\x02e\x02p\x02c\x020\x02\"\x02a\x02c\x021\x021\x02m\x02v\x02"
// Repeat for every single byte XOR operation.
condition:
any of them

Since YARA 3.11, if you want more control over the range of bytes used with the xor modifier use:

rule XorExampleb
{
strings:
$xor_string = "This program cannot" xor (0x01-0xff)
condition:
$xor_string

The above example will apply the bytes from 0x01 to Oxff, inclusively, to the string when searching. The general
syntax is xor (minimum-maximum).

Base64 strings

The base 64 modifier can be used to search for strings that have been base64 encoded. A good explanation of the
technique is at:

https://www.leeholmes.com/searching-for-content-in-base-64-strings/

The following rule will search for the three base64 permutations of the string "This program cannot":

rule Base64Examplel

{

(continues on next page)

2.2, Strings 13

https://www.leeholmes.com/searching-for-content-in-base-64-strings/

yara Documentation, Release 4.4.0

(continued from previous page)

strings:
Sa = "This program cannot" base64
condition:

Sa

This will cause YARA to search for these three permutations:

VGhpcyBwem9ncmFtIGNhbm5vd
RoaXMgcHJvZ3JhbSBjYW5ub3
UaGlzIHByb2dy Y WO0gY2Fubm90

The base64wide modifier works just like the base 64 modifier but the results of the base 64 modifier are con-
verted to wide.

The interaction between base64 (or base64wide) and wide and ascii is as you might expect. wide and
ascii are applied to the string first, and then the base 64 and base64wide modifiers are applied. At no point is
the plaintext of the ascii or wide versions of the strings included in the search. If you want to also include those
you can put them in a secondary string.

The base 64 and base 64wide modifiers also support a custom alphabet. For example:

rule Baseb64Example?2
{
strings:
Sa = "This program cannot" base64 ("!Q#S$%"&x () {}[].,
— | ABCDEFGHIJ\x09LMNOPQRSTUVWXYZabcdefghijklmnopgrstu")

condition:

Sa

The alphabet must be 64 bytes long.

The base64 and base 64wide modifiers are only supported with text strings. Using these modifiers with a hexadec-
imal string or a regular expression will cause a compiler error. Also, the xor, fullword, and nocase modifiers
used in combination with base 64 or base64wide will cause a compiler error.

Because of the way that YARA strips the leading and trailing characters after base64 encoding, one of the base64
encodings of "Dhis program cannow" and "This program cannot" are identical. Similarly, using the base 64 keyword
on single ASCII characters is not recommended. For example, "a" with the base 64 keyword matches "*", "b", "c", "!",
"\xA1", or \xE1" after base64 encoding, and will not match where the base64 encoding matches the [GWm2] [EFGH]

regular expression.

Searching for full words

Another modifier that can be applied to text strings is ful lword. This modifier guarantees that the string will match
only if it appears in the file delimited by non-alphanumeric characters. For example the string domain, if defined as
fullword, doesn’t match www.mydomain.com but it matches www.my-domain.com and www.domain.com.

14 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

2.2.3 Regular expressions

Regular expressions are one of the most powerful features of YARA. They are defined in the same way as text strings,
but enclosed in forward slashes instead of double-quotes, like in the Perl programming language.

rule RegExpExamplel
{
strings:
Srel = /md5: [0-9a-fA-F]{32}/
Sre2 = /state: (on|off)/

condition:
Srel and Sre2

Regular expressions can be also followed by nocase, ascii, wide, and fullword modifiers just like in text
strings. The semantics of these modifiers are the same in both cases.

Additionally, they can be followed by the characters i and s just after the closing slash, which is a very common con-
vention for specifying that the regular expression is case-insensitive and that the dot (.) can match new-line characters.
For example:

rule RegExpExample?2
{

strings:
Srel = /foo/1 // This regexp is case-insentitive
Sre2 = /bar./s // In this regexp the dot matches everything, including new-
—line

Sre3 = /baz./is // Both modifiers can be used together
condition:
any of them

Notice that /foo/1 is equivalent to /foo/ nocase, but we recommend the latter when defining strings. The
/foo/1 syntax is useful when writting case-insentive regular expressions for the mat ches operator.

In previous versions of YARA, external libraries like PCRE and RE2 were used to perform regular expression match-
ing, but starting with version 2.0 YARA uses its own regular expression engine. This new engine implements most
features found in PCRE, except a few of them like capture groups, POSIX character classes ([[:isalpha:]], [[:isdigit:]],
etc) and backreferences.

YARA'’s regular expressions recognise the following metacharacters:

\ Quote the next metacharacter

~ Match the beginning of the file or negates a character class when used as the first char-
acter after the opening bracket

$ Match the end of the file

. Matches any single character except a newline character

| Alternation

Q) Grouping

[Bracketed character class

The following quantifiers are recognised as well:

2.2. Strings 15

yara Documentation, Release 4.4.0

*

Match O or more times

+

Match 1 or more times

2

Match O or 1 times

{n}

Match exactly n times

{n,}

Match at least n times

{,m}

Match at most m times

{n,m}

Match n to m times

All these quantifiers have a non-greedy variant, followed by a question mark (?):

*7? Match O or more times, non-greedy
+? Match 1 or more times, non-greedy
77 Match O or 1 times, non-greedy
{n}? Match exactly n times, non-greedy
{n,}? Match at least n times, non-greedy
{,m}? Match at most m times, non-greedy
{n,m}? Match n to m times, non-greedy

The following escape sequences are recognised:

\t Tab (HT, TAB)

\n New line (LF, NL)

\r Return (CR)

\f Form feed (FF)

\a Alarm bell

\xNN Character whose ordinal number is the given hexadecimal number

These are the recognised character classes:

\w Match a word character (alphanumeric plus “_")
\W Match a non-word character

\s Match a whitespace character

\S Match a non-whitespace character

\d Match a decimal digit character

\D Match a non-digit character

Starting with version 3.3.0 these zero-width assertions are also recognized:

\b

Match a word boundary

\B

Match except at a word boundary

2.2.4 Private strings

All strings in YARA can be marked as private which means they will never be included in the output of YARA.
They are treated as normal strings everywhere else, so you can still use them as you wish in the condition, but they
will never be shown with the —s flag or seen in the YARA callback if you’re using the C APL

16 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

rule PrivateStringExample
{
strings:
Stext_string = "foobar" private

condition:
Stext_string

2.2.5 Unreferenced strings

YARA 4.4.0 allows for unreferenced strings in the condition. If a string identifier starts with an __ then it does not have
to be referenced in the condition. Any other string must be referenced in the condition. This is useful if you want to
search for particular strings and handle them in a custom callback but don’t really need them for your condition logic.

rule PrivateStringExample
{
strings:
$S_unreferenced = "AXSERS"

condition:
true

2.2.6 String Modifier Summary

The following string modifiers are processed in the following order, but are only applicable to the string types listed.

Table 2: Text string modifiers

Keyword | String Types Summary Restrictions
nocase | Text, Regex Ignore case Cannot use with xor, baseé64, or
base6dwide
wide Text, Regex Emulate UTF16 by interleaving null | None
(0x00) characters
ascii Text, Regex Also match ASCII characters, only re- | None
quired if wide is used
XOor Text XOR text string with single byte keys | Cannotuse with nocase, base64, or
base6dwide
base64 | Text Convert to 3 base64 encoded strings Cannot use with nocase, xor, or
fullword
base64wjdext Convert to 3 base64 encoded strings, | Cannot use with nocase, xor, or
then interleaving null characters like | fullword
wide
fullword Text, Regex Match is not preceded or followed by | Cannot wuse with base64 or
an alphanumeric character base64wide
private| Hex, Text, Regex | Match never included in output None

2.2. Strings 17

yara Documentation, Release 4.4.0

2.3 Conditions

Conditions are nothing more than Boolean expressions as those that can be found in all programming languages, for
example in an if statement. They can contain the typical Boolean operators and, or, and not, and relational operators
>=, <=, <, >, == and !=. Also, the arithmetic operators (+, —, %, \, %) and bitwise operators (&, |, <<, >>, ~, *) can
be used on numerical expressions.

Integers are always 64-bits long, even the results of functions like uintS8, uintl6 and uint32 are promoted to 64-bits.
This is something you must take into account, specially while using bitwise operators (for example, ~0x01 is not OXFE
but OXFFFFFFFFFFFFFFFE).

The following table lists the precedence and associativity of all operators. The table is sorted in descending precedence
order, which means that operators listed on a higher row in the list are grouped prior operators listed in rows further
below it. Operators within the same row have the same precedence, if they appear together in a expression the
associativity determines how they are grouped.

18 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

Prece-Operator Description As-
denge so-
cia-
tiv-
ity
1 [] Array subscripting Left-
Structure member access to-
right
2 - Unary minus Right
~ Bitwise not to-
left
3 * Multiplication Left-
\ Division to-
% Remainder right
4 + Addition Left-
- Subtraction to-
right
5 << Bitwise left shift Left-
>> Bitwise right shift to-
right
6 & Bitwise AND Left-
to-
right
7 A Bitwise XOR Left-
to-
right
8 Bitwise OR Left-
to-
right
9 < Less than Left-
<= Less than or equal to to-
> Greater than right
>= Greater than or equal to
10 | == Equal to Left-
I= Not equal to to-
contains String contains substring right
icontains Like contains but case-insensitive
startswith String starts with substring
istartswith Like startswith but case-insensitive
endswith String ends with substring
iendswith Like endswith but case-insensitive
iequals Case-insensitive string comparison
matches String matches regular expression
11 not defined Logical NOT Check if an expression is defined Right
to-
left
12 | and Logical AND Left-
to-
right
13 or Logical OR Left-
to-
right
2.3. Conditions 19

yara Documentation, Release 4.4.0

String identifiers can be also used within a condition, acting as Boolean variables whose value depends on the presence
or not of the associated string in the file.

rule Example

{

strings:
Sa = "textl"
Sb = "text2"
Sc = "text3"
Sd = "text4"
condition:

(Sa or S$b) and ($c or $d)

2.3.1 Counting strings

Sometimes we need to know not only if a certain string is present or not, but how many times the string appears in
the file or process memory. The number of occurrences of each string is represented by a variable whose name is the
string identifier but with a # character in place of the $ character. For example:

rule CountExample

{

strings:

Sa = "dummyl"

$b = "dummy2"
condition:

#a == 6 and #b > 10

This rule matches any file or process containing the string $a exactly six times, and more than ten occurrences of string

$b.

Starting with YARA 4.2.0 it is possible to express the count of a string in an integer range, like this:

#a in (filesize-500..filesize) == 2

In this example the number of ’a’ strings in the last 500 bytes of the file must equal exactly 2.

2.3.2 String offsets or virtual addresses

In the majority of cases, when a string identifier is used in a condition, we are willing to know if the associated string
is anywhere within the file or process memory, but sometimes we need to know if the string is at some specific offset
on the file or at some virtual address within the process address space. In such situations the operator at is what we
need. This operator is used as shown in the following example:

rule AtExample
{

strings:
Sa = "dummyl"
Sb = "dummy2"
condition:

(continues on next page)

20 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

(continued from previous page)

Sa at 100 and $b at 200
}

The expression $a at 100 in the above example is true only if string $a is found at offset 100 within the file (or at
virtual address 100 if applied to a running process). The string $b should appear at offset 200. Please note that both
offsets are decimal, however hexadecimal numbers can be written by adding the prefix Ox before the number as in the
C language, which comes very handy when writing virtual addresses. Also note the higher precedence of the operator
at over the and.

While the at operator allows to search for a string at some fixed offset in the file or virtual address in a process
memory space, the in operator allows to search for the string within a range of offsets or addresses.

rule InExample

{

strings:
Sa = "dummyl"
Sb = "dummy2"
condition:

Sa in (0..100) and $b in (100..filesize)
}

In the example above the string $a must be found at an offset between 0 and 100, while string $b must be at an offset
between 100 and the end of the file. Again, numbers are decimal by default.

You can also get the offset or virtual address of the i-th occurrence of string $a by using @a[i]. The indexes are
one-based, so the first occurrence would be @a[1] the second one @a[2] and so on. If you provide an index greater
than the number of occurrences of the string, the result will be a NaN (Not A Number) value.

2.3.3 Match length

For many regular expressions and hex strings containing jumps, the length of the match is variable. If you have the
regular expression /fo*/ the strings "fo", "foo" and "fooo" can be matches, all of them with a different length.

You can use the length of the matches as part of your condition by using the character ! in front of the string identifier,
in a similar way you use the @ character for the offset. !a[1] is the length for the first match of $a, !a[2] is the length
for the second match, and so on. !a is a abbreviated form of !a[1].

2.3.4 File size

String identifiers are not the only variables that can appear in a condition (in fact, rules can be defined without any
string definition as will be shown below), there are other special variables that can be used as well. One of these special
variables is filesize, which holds, as its name indicates, the size of the file being scanned. The size is expressed
in bytes.

rule FileSizeExample
{
condition:
filesize > 200KB
}

The previous example also demonstrates the use of the KB postfix. This postfix, when attached to a numerical constant,
automatically multiplies the value of the constant by 1024. The MB postfix can be used to multiply the value by 2/20.
Both postfixes can be used only with decimal constants.

2.3. Conditions 21

yara Documentation, Release 4.4.0

The use of £ilesize only makes sense when the rule is applied to a file. If the rule is applied to a running process
it won’t ever match because filesize doesn’t make sense in this context.

2.3.5 Executable entry point

Another special variable than can be used in a rule is entrypoint. If the file is a Portable Executable (PE) or
Executable and Linkable Format (ELF), this variable holds the raw offset of the executable’s entry point in case we
are scanning a file. If we are scanning a running process, the entrypoint will hold the virtual address of the main
executable’s entry point. A typical use of this variable is to look for some pattern at the entry point to detect packers
or simple file infectors.

rule EntryPointExamplel
{
strings:
Sa = { E8 00 00 00 00 }

condition:
Sa at entrypoint

rule EntryPointExample2
{
strings:
Sa = { 9C 50 66 Al 22 2?2 2?2 00 66 A9 22 2?2 58 OF 85 }

condition:
Sa in (entrypoint..entrypoint + 10)

The presence of the ent rypoint variable in a rule implies that only PE or ELF files can satisfy that rule. If the file
is not a PE or ELF, any rule using this variable evaluates to false.

Warning: The entrypoint variable is deprecated, you should use the equivalent pe .entry_point from
the PE module instead. Starting with YARA 3.0 you’ll get a warning if you use entrypoint and it will be
completely removed in future versions.

2.3.6 Accessing data at a given position

There are many situations in which you may want to write conditions that depend on data stored at a certain file offset
or virtual memory address, depending on if we are scanning a file or a running process. In those situations you can
use one of the following functions to read data from the file at the given offset:

int8 (<offset or virtual address>)
intl6 (<offset or virtual address>)
int32 (<offset or virtual address>)

uint8 (<offset or virtual address>)
uintlé6 (<offset or virtual address>)
uilnt32 (<offset or virtual address>)

int8be (<offset or virtual address>)
intlébe (<offset or virtual address>)
int32be (<offset or virtual address>)

(continues on next page)

22 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

(continued from previous page)

uint8be (<offset or virtual address>)
uintlébe (<offset or virtual address>)
uint32be (<offset or virtual address>)

The int XX functions read 8, 16, and 32 bits signed integers from <offset or virtual address>, while functions uint XX
read unsigned integers. Both 16 and 32 bit integers are considered to be little-endian. If you want to read a big-endian
integer use the corresponding function ending in be. The <offset or virtual address> parameter can be any expression
returning an unsigned integer, including the return value of one the uint XX functions itself. As an example let’s see
a rule to distinguish PE files:

rule IsPE
{
condition:
// MZ signature at offset 0 and
uintl6(0) == 0x5A4D and
// ... PE signature at offset stored in MZ header at 0x3C
uint32 (uint32 (0x3C)) == 0x00004550

2.3.7 Sets of strings

There are circumstances in which it is necessary to express that the file should contain a certain number strings from
a given set. None of the strings in the set are required to be present, but at least some of them should be. In these
situations the of operator can be used.

rule OfExamplel
{

strings:
Sa = "dummyl"
Sb = "dummy2"
Sc = "dummy3"
condition:

2 of ($a,$b,sSc)

This rule requires that at least two of the strings in the set ($a,$b,$c) must be present in the file, but it does not matter
which two. Of course, when using this operator, the number before the o f keyword must be less than or equal to the
number of strings in the set.

The elements of the set can be explicitly enumerated like in the previous example, or can be specified by using wild
cards. For example:

rule OfExample2
{

strings:
Sfool = "fool"
S$foo2 = "foo2"
S$foo3 = "foo3"
condition:

2 of (Sfoox) // equivalent to 2 of ($fool,$foo2,5$f003)

(continues on next page)

2.3. Conditions 23

yara Documentation, Release 4.4.0

(continued from previous page)

rule OfExample3
{

strings:
Sfool = "fool"
Sfoo2 = "foo2"
Sbarl = "barl"
Sbar2 = "bar2"
condition:

3 of ($foox,S$barl, $bar2)

You can even use ($+) torefer to all the strings in your rule, or write the equivalent keyword t hem for more legibility.

rule OfExampled
{

strings:
Sa = "dummyl"
Sb = "dummy2"
Sc = "dummy3"
condition:

1 of them // equivalent to 1 of ($x*)

In all the examples above, the number of strings have been specified by a numeric constant, but any expression
returning a numeric value can be used. The keywords any, all and none can be used as well.

all of them // all strings in the rule

any of them // any string in the rule

all of (Sax) // all strings whose identifier starts by $a

any of (S$Sa,$b,S$c) // any of $a, $b or $c

1 of ($%) // same that "any of them"

none of ($Sbx) // zero of the set of strings that start with "$b"

Warning: Due to the way YARA works internally, using "0 of them" is an ambiguous part of the language which
should be avoided in favor of "none of them". To understand this, consider the meaning of "2 of them", which is
true if 2 or more of the strings match. Historically, "0 of them" followed this principle and would evaluate to true
if at least one of the strings matched. This ambiguity is resolved in YARA 4.3.0 by making "0 of them" evaluate to
true if exactly O of the strings match. To improve on the situation and make the intent clear, it is encouraged to use
"none" in place of 0. By not using an integer it is easier to reason about the meaning of "none of them" without the
historical understanding of "at least 0" clouding the issue.

Starting with YARA 4.2.0 it is possible to express a set of strings in an integer range, like this:

all of ($ax*) in (filesize-500..filesize)
any of ($ax, Sbx) in (1000..2000)

Starting with YARA 4.3.0 it is possible to express a set of strings at a specific offset, like this:

any of ($ax) at 0

24 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

2.3.8 Applying the same condition to many strings

There is another operator very similar to of but even more powerful, the for. . of operator. The syntax is:

for expression of string_set : (boolean_expression)

And its meaning is: from those strings in string_set at least expression of them must satisty
boolean_expression.

In other words: boolean_expression is evaluated for every string in st ring_set and there must be at least
expression of them returning True.

Of course, boolean_expression can be any boolean expression accepted in the condition section of a rule, except
for one important detail: here you can (and should) use a dollar sign ($) as a place-holder for the string being evaluated.
Take a look at the following expression:

for any of ($a,$b,S$c) : ($ at pe.entry_point)

The $ symbol in the boolean expression is not tied to any particular string, it will be $a, and then $b, and then $c in
the three successive evaluations of the expression.

Maybe you already realised that the of operator is a special case of for. .of. The following expressions are the
same:

any of ($a, $b, $c)
for any of (a,sb,S$c) : ($)

You can also employ the symbols #, @, and ! to make reference to the number of occurrences, the first offset, and the
length of each string respectively.

for all of them : (# > 3)
for all of ($Sax) : (@ > @b)

Starting with YARA 4.3.0 you can express conditions over text strings like this:

for any s in ("71b36345516e076a0663e0bead97759%e4", "le7f7edeb06de02£2c2a9319de99e033") ,
—: (pe.imphash () ==)

It is worth remembering here that the two hashes referenced in the rule are normal text strings, and have nothing to
do with the string section of the rule. Inside the loop condition the result of the pe.imphash() function is compared to
each of the text strings, resulting in a more concise rule.

2.3.9 Using anonymous strings with of and for. .of

When using the of and for. .of operators followed by them, the identifier assigned to each string of the rule is
usually superfluous. As we are not referencing any string individually we do not need to provide a unique identifier for
each of them. In those situations you can declare anonymous strings with identifiers consisting only of the $ character,
as in the following example:

rule AnonymousStrings

{

strings:
$ = "dummyl"
$ = "dummy2"
condition:

(continues on next page)

2.3. Conditions 25

yara Documentation, Release 4.4.0

(continued from previous page)

1 of them

2.3.10 lterating over string occurrences

As seen in String offsets or virtual addresses, the offsets or virtual addresses where a given string appears within a file
or process address space can be accessed by using the syntax: @ali], where i is an index indicating which occurrence
of the string $a you are referring to. (@a[1], @a[2],...).

Sometimes you will need to iterate over some of these offsets and guarantee they satisfy a given condition. In such
cases you can use the for. . in syntax, for example:

rule Occurrences
{
strings:
Sa = "dummyl"
$Sb = "dummy2"

condition:
for all i in (1,2,3) : (Qa[i] + 10 == Q@b[i])

The previous rule says that the first occurrence of $b should be 10 bytes after the first occurrence of $a, and the same
should happen with the second and third ocurrences of the two strings.

The same condition could be written also as:

’for all i in (1..3) : (@a[i] + 10 == @b[i])

Notice that we’re using a range (1..3) instead of enumerating the index values (1,2,3). Of course, we’re not forced to
use constants to specify range boundaries, we can use expressions as well like in the following example:

’for all i in (1..#a) : (Qa[i] < 100)

In this case we’re iterating over every occurrence of $a (remember that #a represents the number of occurrences of
$a). This rule is specifying that every occurrence of $a should be within the first 100 bytes of the file.

In case you want to express that only some occurrences of the string should satisfy your condition, the same logic seen
inthe for. .of operator applies here:

for any 1 in (1..#a) : (Qa[i] < 100)
for 2 i in (1..#a) : (Qa[i] < 100)

The for. .in operator is similar to for. .of, but the latter iterates over a set of strings, while the former iterates
over ranges, enumerations, arrays and dictionaries.

2.3.11 lterators

In YARA 4.0 the for. . in operator was improved and now it can be used to iterate not only over integer enumerations
and ranges (e.g: 1,2,3,4 and 1..4), but also over any kind of iterable data type, like arrays and dictionaries defined by
YARA modules. For example, the following expression is valid in YARA 4.0:

for any section in pe.sections : (section.name == ".text")

26 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

This is equivalent to:

for any i in (0..pe.number_of_sections-1) : (pe.sections[i].name == ".text")

The new syntax is more natural and easy to understand, and is the recommended way of expressing this type of
conditions in newer versions of YARA.

While iterating dictionaries you must provide two variable names that will hold the key and value for each entry in the
dictionary, for example:

for any k,v in some_dict : (k == "foo" and v == "bar")

In general the for. . in operator has the form:

for <quantifier> <variables> in <iterable> : (<some condition using the loop,,
—variables>)

Where <quantifier> is either any, all or an expression that evaluates to the number of items in the iterator that must
satisfy the condition, <variables> is a comma-separated list of variable names that holds the values for the current
item (the number of variables depend on the type of <iterable>) and <iterable> is something that can be iterated.

2.3.12 Referencing other rules

When writing the condition for a rule you can also make reference to a previously defined rule in a manner that
resembles a function invocation of traditional programming languages. In this way you can create rules that depend
on others. Let’s see an example:

rule Rulel
{
strings:
Sa = "dummyl"

condition:

Sa

rule Rule2
{
strings:
Sa = "dummy2"

condition:
$a and Rulel

As can be seen in the example, a file will satisfy Rule2 only if it contains the string "dummy?2" and satisfies Rulel.
Note that it is strictly necessary to define the rule being invoked before the one that will make the invocation.

Another way to reference other rules was introduced in 4.2.0 and that is sets of rules, which operate similarly to sets
of strings (see sets-of-strings). For example:

rule Rulel
{
strings:
Sa = "dummyl"

(continues on next page)

2.3. Conditions 27

yara Documentation, Release 4.4.0

(continued from previous page)

condition:
Sa
}

rule Rule2
{
strings:
Sa = "dummy2"

condition:
Sa
}

rule MainRule
{
strings:
Sa = "dummy2"

condition:
any of (Rulex)

This example demonstrates how to use rule sets to describe higher order logic in a way which automatically grows
with your rules. If you define another rule named Rule3 before MainRule then it will automatically be included in
the expansion of Rulex in the condition for MainRule.

To use rule sets all of the rules included in the set must exist prior to the rule set being used. For example, the following
will produce a compiler error because a2 is defined after the rule set is used in x:

rule al { condition: true }
rule x { condition: 1 of (ax*) }
rule a2 { condition: true }

2.4 More about rules

There are some aspects of YARA rules that have not been covered yet, but are still very important. These are: global
rules, private rules, tags and metadata.

2.4.1 Global rules

Global rules give you the possibility of imposing restrictions in all your rules at once. For example, suppose that
you want all your rules to ignore files that exceed a certain size limit. You could go rule by rule making the required
modifications to their conditions, or just write a global rule like this one:

global rule SizeLimit
{
condition:
filesize < 2MB

You can define as many global rules as you want, they will be evaluated before the rest of the rules, which in turn will
be evaluated only if all global rules are satisfied.

28 Chapter 2. Writing YARA rules

yara Documentation, Release 4.4.0

2.4.2 Private rules

Private rules are a very simple concept. They are just rules that are not reported by YARA when they match on a given
file. Rules that are not reported at all may seem sterile at first glance, but when mixed with the possibility offered by
YARA of referencing one rule from another (see Referencing other rules) they become useful. Private rules can serve
as building blocks for other rules, and at the same time prevent cluttering YARA’s output with irrelevant information.
To declare a rule as private just add the keyword private before the rule declaration.

private rule PrivateRuleExample

{

You can apply both private and global modifiers to a rule, resulting in a global rule that does not get reported by
YARA but must be satisfied.

2.4.3 Rule tags

Another useful feature of YARA is the possibility of adding tags to rules. Those tags can be used later to filter YARA’s
output and show only the rules that you are interested in. You can add as many tags as you want to a rule, they are
declared after the rule identifier as shown below:

rule TagsExamplel : Foo Bar Baz

{

rule TagsExample2 : Bar

{

Tags must follow the same lexical convention of rule identifiers, therefore only alphanumeric characters and under-
scores are allowed, and the tag cannot start with a digit. They are also case sensitive.

When using YARA you can output only those rules which are tagged with the tag or tags that you provide.

2.4.4 Metadata

Besides the string definition and condition sections, rules can also have a metadata section where you can put additional
information about your rule. The metadata section is defined with the keyword met a and contains identifier/value pairs
like in the following example:

rule MetadataExample
{
meta:
my_identifier_1 = "Some string data"
my_identifier 2 = 24
my_identifier_3 = true

strings:
Smy_text_string = "text here"

Smy_hex_string = { E2 34 Al C8 23 FB }

condition:

(continues on next page)

2.4. More about rules 29

yara Documentation, Release 4.4.0

(continued from previous page)

Smy_text_string or $my_hex_string

As can be seen in the example, metadata identifiers are always followed by an equals sign and the value assigned to
them. The assigned values can be strings (valid UTF8 only), integers, or one of the boolean values true or false. Note
that identifier/value pairs defined in the metadata section cannot be used in the condition section, their only purpose is
to store additional information about the rule.

2.5 Using modules

Modules are extensions to YARA'’s core functionality. Some modules like the PE module and the Cuckoo module are
officially distributed with YARA and additional ones can be created by third-parties or even yourself as described in
Writing your own modules.

The first step to using a module is importing it with the import statement. These statements must be placed outside
any rule definition and followed by the module name enclosed in double-quotes. Like this:

import "pe"
import "cuckoo"

After importing the module you can make use of its features, always using <module name>. as a prefix to any
variable or function exported by the module. For example:

pe.entry_point == 0x1000
cuckoo.http_request (/someregexp/)

2.6 Undefined values

Modules often leave variables in an undefined state, for example when the variable doesn’t make sense in the current
context (think of pe.entry_point while scanning a non-PE file). YARA handles undefined values in a way that
allows the rule to keep its meaningfulness. Take a look at this rule:

import "pe"

rule Test

{

strings:
$a = "some string"
condition:
$a and pe.entry_point == 0x1000

If the scanned file is not a PE you wouldn’t expect this rule to match the file, even if it contains the string, because
both conditions (the presence of the string and the right value for the entry point) must be satisfied. However, if the
condition is changed to:

Sa or pe.